
STREAMS-based vs. Legacy Pipe Performance Comparison

Experiment Test Results for Linux

Brian F. G. Bidulock∗

OpenSS7 Corporation

July 26, 2008†

Abstract

With the objective of contrasting performance between
STREAMS and legacy approaches to system facilities, a
comparison is made between the tested performance of the
Linux legacy pipe implementation and the STREAMS-based
pipe implementation using the Linux Fast-STREAMS pack-
age [LfS].

1 Background

Pipes have a rich history in the UNIX operating system.
Present on early Bell Laboratories UNIX Versions, pipes
found their way into both BSD and System V releases. Fi-
nally, in 4.4BSD pipes are implemented with Sockets and in
System V Release 4 pipes are implemented with STREAMS.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Den-
nis M. Ritchie in 1984 [Rit84], originally implemented on
4.1BSD and later part of Bell Laboratories Eighth and Ninth
Edition UNIX, incorporated into UNIX System V Release 3
and enhanced in UNIX System V Release 4 and further in
UNIX System V Release 4.2. STREAMS was used in SVR4
for terminal input-output, pseudo-terminals, pipes, named
pipes (FIFOs), interprocess communication and networking.
Since its release in System V Release 3, STREAMS has been
implemented across a wide range of UNIX, UNIX-like and
UNIX-based systems, making its implementation and use an
ipso facto standard.

STREAMS is a facility that allows for a reconfigurable
full duplex communications path, Stream, between a user
process and a driver in the kernel. Kernel protocol modules
can be pushed onto and popped from the Stream between
the user process and driver. The Stream can be reconfigured
in this way by a user process. The user process, neighbour-
ing protocol modules and the driver communicate with each
other using a message passing scheme. This permits a loose
coupling between protocol modules, drivers and user pro-
cesses, allowing a third-party and loadable kernel module
approach to be taken toward the provisioning of protocol
modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used
for terminal input-output, pipes, FIFOs (named pipes),
and network communications. Modern UNIX, UNIX-like
and UNIX-based systems providing STREAMS normally
support some degree of network communications using
STREAMS; however, many do not support STREAMS-

based pipe and FIFOs1 or terminal input-output2 directly
or without reconfiguration.

1.2 Pipe Implementation

Traditionally there have been two approaches to implemen-
tation of pipes and named pipes (FIFOs):

Legacy Approach to Pipes.

Under the 4.1BSD or SVR3 approach, pipes were imple-
mented using anonymous FIFOs. That is, when a pipe was
opened, a new instance of a FIFO was obtained, but which
was not attached to a node in the file system and which
had two file descriptors: one open for writing and the other
opened for reading. As FIFOs are a fundamentally unidirec-
tional concept, legacy pipes can only pass data in one direc-
tion. Also, legacy pipes do not support the concept of record
boundaries and only support a byte stream. Each end of the
pipe uses a the legacy interface and they do not provide any
of the advanced capabilities provided by STREAMS.

SVR4 Approach to Pipes.

Under the SVR4 approach, both pipes and FIFOs are imple-
mented using STREAMS [GC94]. When a pipe is opened,
a new instance of a STREAMS-based pipe is obtained, but
which is attached to a non-accessible node in the fifofs file
system instead of the normal STREAMS specfs file sys-
tem. Although one file descriptor was opened for read and
the other for write, with a STREAMS-based pipe it is pos-
sible to reopen both for reading and writing.

Stream

head

WQ RQ

midpoint

WQ RQ

Stream

head

Figure 1: STREAMS-Based Pipes

The STREAMS-based pipes provide the same rich set of
facilities that are also available for other STREAMS devices

∗bidulock@openss7.org
†Original edition June 16, 2007

1. For example, AIX.

2. For example, HP-UX.

1

such as pseudo-terminals and network interfaces. As a re-
sult, STREAMS-based pipes provide a number of capabili-
ties that are not provided by legacy pipes:

Full Duplex. STREAMS-based pipes are full duplex pipes.
That is, each end of the pipe can be used for reading
and writing. To accomplish the same effect with legacy
pipes requires that two legacy pipes be opened.

Pushable Modules. STREAMS-based pipes can have
STREAMS modules pushed an popped from either end
of the pipe, just as any other STREAMS device.

File Attachment. STREAMS-based pipes can have either
end (or both ends) attached to a node in the file system
using fattach(3) [Ste97].

File Descriptor Passing. STREAMS-based pipes can
pass file descriptors across the pipe using the I SENDFD
and I RECVFD input-output controls [Ste97].

Record Boundary Preservation. STREAMS-based
pipes can preserve record boundaries and can pass mes-
sages atomically using the getmsg(2) and putmsg(2)
system calls.

Prioritization of Messages. STREAMS-based pipes
can pass messages in priority bands using the
getpmsg(2) and putpmsg(2) system calls.

BSD Approach to Pipes.

As of 4.2BSD, with the introduction of Sockets, pipes were
implemented using the networking subsystem (UNIX do-
main sockets) for what was cited as ”performance reasons”
[MBKQ97]. The pipe(2) library call effectively calls sock-
pair(3) and obtains a pair of connected sockets in the UNIX
domain as illustrated in Figure 2.

Domain

UNIX

Protocol

SocketSocket

Figure 2: 4.2BSD Pipes

Knowing the result of this testing, I can only imagine that
the ”performance reasons” had to do with the lack of a full
flow control mechanism in the legacy file system based pipes.

Linux Approach to Pipes.

Linux adopts the legacy (4.1BSD or SVR3 pre-STREAMS)
approach to pipes. Pipes are file system based, and obtain an
inode from the pipefs file system as illustrated in Figure 3.
Pipes are unnamed FIFOs, unidirectional byte streams, and
do not provide any of the capabilities of STREAMS-based
pipes or socket pairs in the UNIX domain.3

pipe

private

data and

buffers

file

descriptor descriptor

file

pointer

file

pipefs

inode

i_pipe

Figure 3: Linux Legacy Pipes

Standardization.

During the POSIX standardization process, pipes and FI-
FOs were given special treatment to ensure that both
the legacy approach to pipes, 4.2BSD approach and
the STREAMS-based approach to pipes were compatible.
POSIX has standardized the programmatic interface to
pipes. STREAMS-based pipes have been POSIX com-
pliant for many years and were POSIX compliant in the
SVR4.2 release. The STREAMS-based pipes provided by
the Linux Fast-STREAMS package provides POSIX com-
pliant STREAMS-based pipes.

As a result, any application utilizing a legacy Linux pipe
in a POSIX compliant manner will also be compatible with
STREAMS-based pipes.4

1.3 Linux Fast-STREAMS

The first STREAMS package for Linux that provided SVR4
STREAMS capabilities was the Linux STREAMS (LiS)
package originally available from GCOM. This package ex-
hibited incompatibilities with SVR 4.2 STREAMS and other
STREAMS implementations, was buggy and performed very
poorly on Linux. These difficulties prompted the OpenSS7
Project [SS7] to implement an SVR 4.2 STREAMS package
from scratch, with the objective of production quality and
high-performance, named Linux Fast-STREAMS.

The OpenSS7 Project [SS7] also maintains public and in-
ternal versions of the LiS package. The last public release
was LiS-2.18.3 ; the current internal release version is LiS-
2.18.6. The current production public release of Linux Fast-
STREAMS is streams-0.9.3.

2 Objective

The objective of the current study is to determine whether,
for the Linux operating system, the newer STREAMS-based

3. It has been said of Linux that, without STREAMS, it is just an-
other BSD... ...and not a very good one.

4. This compatibility is exemplified by the perftest(8) program which
does not distinguish between legacy and STREAMS-based pipes in
their implementation or use.

2

pipe approach is (from the perspective of performance) a vi-
able replacement for the legacy 4.1BSD/SVR3-style pipes
provided by Linux. As a side objective, a comparison is also
made to STREAMS-based pipes implemented on the dep-
recated LiS (Linux STREAMS) package. This comparison
will demonstrate one reason why Linux Fast-STREAMS was
written in the first place.

Misconceptions When developing STREAMS, the au-
thors oft times found that there were a number of precon-
ceptions from Linux advocates about both STREAMS and
STREAMS-based pipes, as follows:

• STREAMS is slow.

• STREAMS is more flexible, but less efficient [LML].

• STREAMS performs poorly on uniprocessor and even
poorer on SMP.

• STREAMS-based pipes are slow.

• STREAMS-based pipes are unnecessarily complex and
cumbersome.

For example, the Linux kernel mailing list has this to say
about STREAMS:

(REG) STREAMS allow you to ”push” filters onto a net-
work stack. The idea is that you can have a very
primitive network stream of data, and then ”push” a
filter (”module”) that implements TCP/IP or what-
ever on top of that. Conceptually, this is very nice,
as it allows clean separation of your protocol layers.
Unfortunately, implementing STREAMS poses many
performance problems. Some Unix STREAMS based
server telnet implementations even ran the data up
to user space and back down again to a pseudo-tty
driver, which is very inefficient.

STREAMS will never be available in the standard
Linux kernel, it will remain a separate implementation
with some add-on kernel support (that come with the
STREAMS package). Linus and his networking gurus
are unanimous in their decision to keep STREAMS
out of the kernel. They have stated several times on
the kernel list when this topic comes up that even
optional support will not be included.

(REW, quoting Larry McVoy) ”It’s too bad, I can see
why some people think they are cool, but the perfor-
mance cost - both on uniprocessors and even more so
on SMP boxes - is way too high for STREAMS to ever
get added to the Linux kernel.”

Please stop asking for them, we have agreement
amoungst the head guy, the networking guys, and the
fringe folks like myself that they aren’t going in.

(REG, quoting Dave Grothe, the STREAMS guy)
STREAMS is a good framework for implementing
complex and/or deep protocol stacks having nothing
to do with TCP/IP, such as SNA. It trades some
efficiency for flexibility. You may find the Linux
STREAMS package (LiS) to be quite useful if
you need to port protocol drivers from Solaris or
UnixWare, as Caldera did.

The Linux STREAMS (LiS) package is available for down-
load if you want to use STREAMS for Linux. The fol-
lowing site also contains a dissenting view, which supports
STREAMS.

It is possible that the proponents of these statements have
worked in the past with an improper or under-performing
STREAMS implementation (such as LiS); however, the cur-
rent study aims to prove that none of these statements are
correct for the STREAMS-based pipes provided by the high-
performance Linux Fast-STREAMS.

3 Description

The three implementations tested vary in their implemen-
tation details. These implementation details are described
below.

3.1 Linux Pipes

Linux pipes are implemented using a file-system approach
similar to that of 4.1BSD, or that of SVR3 and SVR2 re-
leases, or their common Bell Laboratories predecessors, as
illustrated in Figure 3. It should be noted that 4.4BSD
(and releases after 4.2BSD) implements pipes using Sockets
and the networking subsystem [MBKQ97]. Also, note that
SVR4 implemented pipes using STREAMS. As such, the
Linux pipe implementation is both archaic and deprecated.

Write side processing. In response to a write(2) system
call, message bytes are copied from user space to kernel di-
rectly into a preallocated buffer. The tail pointer is pushed
on the buffer. If the buffer is full at the time of the system
call, the calling process blocks, or the system call fails and
returns an error number (EAGAIN or EWOULDBLOCK).

Read side processing. In response to a read(2) system
call, message bytes are copied from the preallocated buffer
to user space. The head pointer is pushed on the buffer. If
the buffer is empty at the time of the system call, the calling
process blocks, or the system call fails and returns an error
number (EAGAIN or EWOULDBLOCK).

Buffering. If a writer goes to write and there is no more
room left in the buffer for the requested write, the writer
blocks or the system call is failed (EAGAIN). If a reader goes
to read and there are no bytes in the buffer, the reader blocks
or the system call is failed (EAGAIN). If there are fewer bytes
in the buffer than requested by the read operation, the avail-
able bytes are returned. No queueing or flow control is per-
formed.

Scheduling. When a writer is blocked or polling for write,
the writer is awoken once there is room to write at least 1
byte into the buffer. When a reader is blocked or polling for
read, the reader is awoken once there is at least 1 byte in
the buffer.

3.2 STREAMS-based Pipes

STREAMS-based pipes are implemented using a specialized
STREAMS driver that connects the read and write queues
of two Stream heads in a twisted pair configuration as il-
lustrated in Figure 1. Aside from a few specialized settings
particular to pipes, each Stream head acts in the same fash-
ion as the Stream head for any other STREAMS device or
pseudo-device.

3

Write side processing. In response to a write(2) system
call, message bytes are copied from user space into allocated
message blocks. Message blocks are passed downstream to
the next module (read Stream head) in the Stream. If flow
control is in effect on the write queue at the time of the
system call, the calling process blocks, or the system call fails
and returns an error number (EAGAIN). Also, STREAMS
has a write message coalescing feature that allows message
blocks to be held temporarily on the write queue awaiting
execution of the write queue service procedure (invoked by
the STREAMS scheduler) or the occurrence of another write
operation.

Read side processing. In response to a read(2) system
call, message blocks are removed from the read queue and
message bytes copied from kernel to user space. If there are
no message blocks in the read queue at the time of the sys-
tem call, the calling process blocks, or the system call fails
and returns and error number (EAGAIN). Also, STREAMS
has a read notification feature that causes a read notifica-
tion message (M READ) containing the requested number of
bytes to be issued and passed downstream before blocking.
STREAMS has an additional read-fill mode feature which
causes the read side to attempt to satisfy the entire read
request before returning to the user.

Buffering. If a writer goes to write and the write queue is
flow controlled, the writer blocks or the system call is failed
(EAGAIN). If a reader goes to read and there are no message
blocks available, the reader blocks or the system call is failed
(EAGAIN). If there are fewer bytes available in message blocks
on the read queue than requested by the read operation, the
available bytes are returned. Normal STREAMS queueing
and flow control is performed as message blocks are passed
along the write side or removed from the read queue.

Scheduling. When a write is blocked or polling for write,
the writer is awoken once flow control subsides on the write
side. Flow control subsides when the downstream module’s
queue on the write side falls below its low water mark, the
Stream is back-enabled, and the write queue service proce-
dure runs. When a reader is blocked or polling for read,
the reader is awoken once the read queue service procedure
runs. The read queue service procedure is scheduled when
the first message block is placed on the read queue after an
attempt to remove a message block from the queue failed.
The service procedure runs when the STREAMS scheduler
runs.

4 Method

To test the performance of STREAMS-based pipes, the
Linux Fast-STREAMS package was used [LfS]. The Linux
Fast-STREAMS package builds and install Linux loadable
kernel modules and includes the perftest program used for
testing. For comparison, the LiS package [LiS] was used for
comparison.

4.1 Test Program

To test the maximum throughput performance of both
legacy pipes and STREAMS-based pipes, a test program
was written, called perftest. The perftest program is

part of the Linux Fast-STREAMS distribution [LfS]. The
test program performs the following actions:

1. Opens either a legacy pipe or a STREAMS-based pipe.

2. Forks two child processes: a writer child process and a
reader child process.

3. The writer child process closes the reading end of the
pipe.

4. The writer child process starts an interval timer.

5. The writer child process begins writing data to the pipe
end with the write(2) system call.

6. As the writer child process writes to the pipe end, it
tallies the amount of data written. When the interval
timer expires, the tally is output and the interval timer
restarted.

7. The reader child process closes the writing end of the
pipe.

8. The reader child process starts an interval timer.

9. The reader child process begins reading data from the
pipe end with the read(2) system call.

10. As the reader child process reads from the pipe end, it
tallies the amount of data written. When the interval
timer expires, the tally is output and the interval timer
restarted.

The test program thus simulates a typical use of pipes in
a Linux system. The perftest script performance testing
script was used to obtain repeatable results (see Appendix
A).

4.2 Distrbutions Tested

To remove the dependence of test results on a particular
Linux kernel or machine, various Linux distributions were
used for testing. The distributions tested are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7
CentOS 4 2.6.9-5.0.3.EL
CentOS 5 2.6.18-8-el5
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-generic
Fedora Core 6 2.6.20-1.2933.fc6

4.3 Test Machines

To remove the dependence of test results on a particular
machine, various machines were used for testing as follows:

Hostname Processor Memory Architecture

porky 2.57GHz PIV 1Gb (333MHz) i686 UP
pumbah 2.57GHz PIV 1Gb (333MHz) i686 UP
daisy 3.0GHz i630 HT 1Gb (400MHz) x86 64 SMP
mspiggy 1.7GHz PIV 1Gb (333MHz) i686 UP

4

5 Results

The results for the various distributions and machines is
tabulated in Appendix B. The data is tabulated as follows:

Performance. Performance is charted by graphing the num-
ber of writes per second against the logarithm of the
write size.

Delay. Delay is charted by graphing the number of second
per write against the write size. The delay can be mod-
elled as a fixed write overhead per write operation and
a fixed overhead per byte written. This model results
in a linear graph with the intercept at 1 byte per write
representing the fixed per-write overhead, and the slope
of the line representing the per-byte cost. As all imple-
mentations use the same primary mechanisms for copy-
ing bytes to and from user space, it is expected that the
slope of each graph will be similar and that the intercept
will reflect most implementation differences.

Throughput. Throughput is charted by graphing the loga-
rithm of the product of the number of writes per sec-
ond and the message size against the logarithm of the
message size. It is expected that these graphs will ex-
hibit strong log-log-linear (power function) characteris-
tics. Any curvature in these graphs represent through-
put saturation.

Improvement. Improvement is charted by graphing the quo-
tient of the writes per second of the implementation and
the writes per second of the Linux legacy pipe imple-
mentation as a percentage against the write size. Values
over 0% represent an improvement over Linux legacy
pipes, whereas values under 0% represent the lack of an
improvement.

The results are organized in the section that follow in
order of the machine tested.

5.1 Porky

Porky is a 2.57GHz Pentium IV (i686) uniprocessor machine
with 1Gb of memory. Linux distributions tested on this
machine are as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-generic

5.1.1 Fedora Core 6

Fedora Core 6 is the most recent full release Fedora distri-
bution. This distribution sports a 2.6.20-1.2933.fc6 kernel
with the latest patches. This is the x86 distribution with
recent updates.

Performance. Figure 4 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 4, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 4: FC6 on Porky Performance

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 3.5e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 5: FC6 on Porky Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 6: FC6 on Porky Throughput

−100%

−50%

 0%

 50%

100%

150%

200%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 7: FC6 on Porky Comparison

5

across the entire range of write sizes. Performance of
Linux Fast-STREAMS is a full order of magnitude bet-
ter than LiS.

Delay. Figure 5 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. The slope of all three curves is
comparable and about the same. This indicates that
each implementation is only slightly dependent upon
the size of the message and each implementation has a
low per-byte processing overhead. This is as expected as
pipes primarily copy data from user space to the kernel
just to copy it back to user space on the other end.
Note that the intercepts, on the other hand, differ to a
significant extent. Linux Fast-STREAMS STREAMS-
based pipes have by far the lowest per-write overhead
(about half that of the Linux legacy pipes, and a sixth
of LiS pipes).

Throughput. Figure 6 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 6, all implementations exhibit strong power func-
tion characteristics, indicating structure and robustness
for each implementation (regardless of performance).

Improvement. Figure 7 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is marked: im-
provements range from a significant 75% increase in per-
formance at large write sizes, to a staggering 200% in-
crease in performance at lower write sizes.

5.1.2 CentOS 4.0

CentOS 4.0 is a clone of the RedHat Enterprise 4 distri-
bution. This is the x86 version of the distribution. The
distribution sports a 2.6.9-5.0.3.EL kernel.

Performance. Figure 8 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 8, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of
Linux Fast-STREAMS is a full order of magnitude bet-
ter than LiS.

Delay. Figure 9 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. The slope of all three curves is
comparable and about the same. This indicates that
each implementation is only slightly dependent upon
the size of the message and each implementation has a
low per-byte processing overhead. This is as expected as
pipes primarily copy data from user space to the kernel
just to copy it back to user space on the other end.
Note that the intercepts, on the other hand, differ to a
significant extent. Linux Fast-STREAMS STREAMS-
based pipes have by far the lowest per-write overhead
(about half that of the Linux legacy pipes, and a sixth
of LiS pipes).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 8: CentOS 4.0 on Porky Performance

 0

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 2.2e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 9: CentOS 4.0 on Porky Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 10: CentOS 4.0 on Porky Throughput

−100%

−50%

 0%

 50%

100%

150%

200%

250%

300%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 11: CentOS 4.0 on Porky Comparison

6

Throughput. Figure 10 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 10, all implementations exhibit strong power
function characteristics, indicating structure and ro-
bustness for each implementation (regardless of perfor-
mance).

Improvement. Figure 11 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is marked: im-
provements range from a significant 100% increase in
performance at large write sizes, to a staggering 275%
increase in performance at lower write sizes.

5.1.3 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the
SuSE/Novell distribution. There have been two releases sub-
sequent to this one: the 10.1 and recent 10.2 releases. The
SuSE 10 release sports a 2.6.13 kernel and the 2.6.13-15-
default kernel was the tested kernel.

Performance. Figure 12 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 12, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of
Linux Fast-STREAMS is a full order of magnitude bet-
ter than LiS.

Delay. Figure 13 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. The slope of the delay curves are
similar for all implementations, as expected. The zero
intercept of Linux Fast-STREAMS is, however, far su-
perior to that of legacy Linux and a full order of mag-
nitude better than the under-performing LiS.

Throughput. Figure 14 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 14, all implementations exhibit strong power
function characteristics, indicating structure and ro-
bustness for each implementation. The Linux Fast-
STREAMS curve exhibits a downward concave charac-
teristic at large message sizes indicating that the mem-
ory bus saturates at about 10Gbps.

Improvement. Figure 15 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 100% increase in perfor-
mance at large write sizes, to a 475% increase in per-
formance at lower write sizes.

5.1.4 Ubuntu 6.10

Ubuntu 6.10 is the current release of the Ubuntu distribu-
tion. The Ubuntu 6.10 release sports a 2.6.15 kernel. The
tested distribution had current updates applied.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 12: SuSE 10.0 OSS on Porky Performance

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 13: SuSE 10.0 OSS on Porky Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 14: SuSE 10.0 OSS on Porky Throughput

−100%

 0%

100%

200%

300%

400%

500%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 15: SuSE 10.0 OSS on Porky Comparison

7

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 16: Ubuntu 6.10 on Porky Performance

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 2.2e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 17: Ubuntu 6.10 on Porky Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 18: Ubuntu 6.10 on Porky Throughput

−100%

−50%

 0%

 50%

100%

150%

200%

250%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 19: Ubuntu 6.10 on Porky Comparison

Performance. Figure 20 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 20, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of
Linux Fast-STREAMS is a full order of magnitude bet-
ter than LiS.

Delay. Figure 21 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. Again, the slope of the delay curves
is similar, but Linux Fast-STREAMS exhibits a greatly
reduced intercept indicating superior per-message over-
heads.

Throughput. Figure 22 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 22, all implementations exhibit strong power
function characteristics, indicating structure and ro-
bustness for each implementation. Again Linux Fast-
STREAMS appears to saturate the memory bus ap-
proaching 10Gbps.

Improvement. Figure 23 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 75% increase in perfor-
mance at large write sizes, to a 200% increase in per-
formance at lower write sizes.

5.1.5 Ubuntu 7.04

Ubuntu 7.04 is the current release of the Ubuntu distribu-
tion. The Ubuntu 7.04 release sports a 2.6.20 kernel. The
tested distribution had current updates applied.

Performance. Figure 20 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 20, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of
Linux Fast-STREAMS is a full order of magnitude bet-
ter than LiS.

Delay. Figure 21 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. Again, the slope of the delay curves
is similar, but Linux Fast-STREAMS exhibits a greatly
reduced intercept indicating superior per-message over-
heads.

Throughput. Figure 22 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 22, all implementations exhibit strong power

8

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux

Figure 20: Ubuntu 7.04 on Porky Performance

 1e−06

 2e−06

 3e−06

 4e−06

 5e−06

 6e−06

 7e−06

 8e−06

 9e−06

 1e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux

Figure 21: Ubuntu 7.04 on Porky Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux

Figure 22: Ubuntu 7.04 on Porky Throughput

 0%

 50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux

Figure 23: Ubuntu 7.04 on Porky Comparison

function characteristics, indicating structure and ro-
bustness for each implementation. Again Linux Fast-
STREAMS appears to saturate the memory bus ap-
proaching 10Gbps.

Improvement. Figure 23 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 75% increase in perfor-
mance at large write sizes, to a 200% increase in per-
formance at lower write sizes.

5.2 Pumbah

Pumbah is a 2.57GHz Pentium IV (i686) uniprocessor ma-
chine with 1Gb of memory. This machine differs from Porky
in memory type only (Pumbah has somewhat faster memory
than Porky.) Linux distributions tested on this machine are
as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7

Pumbah is a control machine and is used to rule out dif-
ferences between recent 2.6 kernels and one of the oldest and
most stable 2.4 kernels.

5.2.1 RedHat 7.2

RedHat 7.2 is one of the oldest (and arguably the most sta-
ble) glibc2 based releases of the RedHat distribution. This
distribution sports a 2.4.20-28.7 kernel. The distribution has
all available updates applied.

Performance. Figure 24 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 24, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. At a write size of
one byte, the performance of Linux Fast-STREAMS is
an order of magnitude greater than LiS.

Delay. Figure 25 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. The slope of all three graphs
is similar, indicating that memory caching and copy to
and from user performance on a byte-by-byte basis is
similar. The intercepts, on the other hand, are drasti-
cally different. LiS per-message overheads are massive.
Linux Fast-STREAMS and Linux legacy pipes are far
better. STREAMS-based pipes have about one third of
the per-message overhead of legacy pipes.

Throughput. Figure 26 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 26, all implementations exhibit strong power
function characteristics, indicating structure and ro-
bustness for each implementation (despite performance
differences). On Pumbah, as was experienced on Porky,
Linux Fast-STREAMS is beginning to saturate the
memory bus at 10Gbps.

9

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 24: RH7.2 on Pumbah Performance

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 2.2e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 25: RH7.2 on Pumbah Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 26: RH7.2 on Pumbah Throughput

−100%

−50%

 0%

 50%

100%

150%

200%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 27: RH7.2 on Pumbah Comparison

Improvement. Figure 27 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 75% increase in perfor-
mance at large write sizes, to a 175% increase in per-
formance at lower write sizes. LiS pipes waddle in at a
75% decrease in performance.

5.3 Daisy

Daisy is a 3.0GHz i630 (x86 64) hyper-threaded machine
with 1Gb of memory. Linux distributions tested on this
machine are as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 5 2.6.18-8-el5
CentOS 5.2 2.6.18-92.1.6.el5.centos.plus

This machine is used as an SMP control machine. Most of
the test were performed on uniprocessor non-hyper-threaded
machines. This machine is hyper-threaded and runs full
SMP kernels. This machine also supports EMT64 and runs
x86 64 kernels. It is used to rule out both SMP differences
as well as 64-bit architecture differences.

5.3.1 Fedora Core 6 (x86 64)

Fedora Core 6 is the most recent full release Fedora distri-
bution. This distribution sports a 2.6.20-1.2933.fc6 kernel
with the latest patches. This is the x86 64 distribution with
recent updates.

Performance. Figure 28 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 28, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. The performance
of Linux Fast-STREAMS is almost an order of magni-
tude greater than that of LiS.

Delay. Figure 29 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. Again the slope appears to be
the same for all implementations, except Linux legacy
pipes which exhibit some anomalies below 1024 byte
write sizes. The intercept for Linux Fast-STREAMS is
again much superior to the other two implementations.

Throughput. Figure 30 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 30, all implementations exhibit strong power
function characteristics, indicating structure and ro-
bustness for each implementation.

Improvement. Figure 31 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:

10

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 28: FC6 on Daisy Performance

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 3.5e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 29: FC6 on Daisy Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 30: FC6 on Daisy Throughput

−100%

−50%

 0%

 50%

100%

150%

200%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 31: FC6 on Daisy Comparison

improvements range from a 100% increase in perfor-
mance at large write sizes, to a 175% increase in per-
formance at lower write sizes. LiS again drags in at
-75%.

5.3.2 CentOS 5 (x86 64)

CentOS 5 is the most recent full release CentOS distribution.
This distribution sports a 2.6.18-8-el5 kernel with the latest
patches. This is the x86 64 distribution with recent updates.

Performance. Figure 32 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 32, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. The performance
of Linux Fast-STREAMS is almost an order of magni-
tude greater than that of LiS.

Delay. Figure 33 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. Again the slope appears to be
the same for all implementations, except Linux legacy
pipes which exhibit some anomalies below 1024 byte
write sizes. The intercept for Linux Fast-STREAMS is
again much superior to the other two implementations.

Throughput. Figure 34 illustrates the throughput experi-
enced by LiS, Linux Fast-STREAMS and Linux legacy
pipes across a range of write sizes. As can be seen from
Figure 34, all implementations exhibit strong power
function characteristics, indicating structure and ro-
bustness for each implementation.

Improvement. Figure 35 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 100% increase in perfor-
mance at large write sizes, to a 175% increase in per-
formance at lower write sizes. LiS again drags in at
-75%.

5.3.3 CentOS 5.2 (x86 64)

CentOS 5.2 is the most recent full release CentOS distri-
bution. This distribute sports a 2.6.18-92.1.6.el5.centos.plus
kernel with the latest patches. This is the x86 64 distribu-
tion with recent updates.

This is a test result set that was updated July 26, 2008.
The additional options, -H, -M, -F and -w were added to the
perftest script command line. Also, streams-0.9.2.4
was tested.

Performance. Figure 36 illustrates the performance of
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be see from Figure 36,
the performance of Linux Fast-STREAMS STREAMS-
based pipes is superior across the entire range of write
sizes. The performance of Linux Fast-STREAMS is sig-
nificantly greater (by a factor of 4 through 7) than Linux
legacy pipes at smaller write sizes.

11

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux

Figure 32: CentOS 5 on Daisy Performance

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux

Figure 33: CentOS 5 on Daisy Delay

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux

Figure 34: CentOS 5 on Daisy Throughput

−60%

−40%

−20%

 0%

 20%

 40%

 60%

 80%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux

Figure 35: CentOS 5 on Daisy Comparison

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux

Figure 36: CentOS 5.2 on Daisy Performance

 0

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 8192 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux

Figure 37: CentOS 5.2 on Daisy Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux

Figure 38: CentOS 5.2 on Daisy Throughput

 0%

100%

200%

300%

400%

500%

600%

 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux

Figure 39: CentOS 5.2 on Daisy Comparison

12

The performance boost experienced by Linux Fast-
STREAMS at write sizes beneath 128 is primariliy due
to the write coallescing feature (hold feature) of the
Stream head combined with the fact that the fast-buffer
sizes for x86 64 is 128 bytes. The performance boost ex-
perienced across the entire range is primarily due to the
read-fill option combined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

Delay. Figure 37 illustrates the average write delay for
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. Again the slope appears to be
similar for both implementations if a little bit erratic.
The intercept for Linux Fast-STREAMS is again much
superior than Linux legacy pipes.

Again, the delay drop experienced by Linux Fast-
STREAMS at write sizes beneath 128 is primariliy due
to the write coallescing feature (hold feature) of the
Stream head combined with the fact that the fast-buffer
sizes for x86 64 is 128 bytes. The delay drop experi-
enced across the entire range is primarily due to the
read-fill option combined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

Throughput. Figure 38 illustrates the throughput experi-
enced by Linux Fast-STREAMS and Linux legacy pipes
across a range of write sizes. As can be seen from Figure
38, all implementations exhibit strong power function
characteristics, indicating structure and robustness for
each implementation.

Again, the throughput increase experienced by Linux
Fast-STREAMS at write sizes beneath 128 is primariliy
due to the write coallescing feature (hold feature) of the
Stream head combined with the fact that the fast-buffer
sizes for x86 64 is 128 bytes. The throughput increase
experienced across the entire range is primarily due to
the read-fill option combined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

Improvement. Figure 39 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 100% increase in perfor-
mance at large write sizes, to a staggering 500% increase
in performance at lower write sizes.

Again, the improvements experienced by Linux Fast-
STREAMS at write sizes beneath 128 is primariliy due
to the write coallescing feature (hold feature) of the
Stream head combined with the fact that the fast-buffer
sizes for x86 64 is 128 bytes. The improvements expe-
rienced across the entire range is primarily due to the
read-fill option combined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

5.4 Mspiggy

Mspiggy is a 1.7Ghz Pentium IV (M-processor) uniproces-
sor notebook (Toshiba Satellite 5100) with 1Gb of memory.
Linux distributions tested on this machine are as follows:

Distribution Kernel

SuSE 10.0 OSS 2.6.13-15-default

Note that this is the same distribution that was also tested
on Porky. The purpose of testing on this notebook is to rule
out the differences between machine architectures on the test
results. Tests performed on this machine are control tests.

5.4.1 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the
SuSE/Novell distribution. There have been two releases sub-
sequent to this one: the 10.1 and recent 10.2 releases. The
SuSE 10 release sports a 2.6.13 kernel and the 2.6.13-15-
default kernel was the tested kernel.

Performance. Figure 40 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 40, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is supe-
rior across the entire range of write sizes. Linux Fast-
STREAMS again performs a full order of magnitude
better than LiS.

Delay. Figure 41 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. The slope of the delay curves
is, again, similar, but the intercept for Linux Fast-
STREAMS is far superior.

Throughput. Figure 42 illustrates the throughput ex-
perienced by LiS, Linux Fast-STREAMS and Linux
legacy pipes across a range of write sizes. As can
be seen from Figure 42, all implementations exhibit
strong power function characteristics, indicating struc-
ture and robustness for each implementation. Linux
Fast-STREAMS again begins to saturate the memory
bus at 10Gbps.

Improvement. Figure 43 illustrates the improvement
over Linux legacy pipes of Linux Fast-STREAMS
STREAMS-based pipes. The improvement of Linux
Fast-STREAMS over Linux legacy pipes is significant:
improvements range from a 100% increase in perfor-
mance at large write sizes, to a staggering 400% increase
in performance at lower write sizes.

6 Analysis

The results across the various distributions and machines
tested are consistent enough to draw some conclusions from
the test results.

6.1 Discussion

The test results reveal that the maximum throughput perfor-
mance, as tested by the perftest program, of STREAMS-
based pipes (as implemented by Linux Fast-STREAMS) is

13

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 40: SuSE 10.0 OSS on Mspiggy Performance

 0

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 2.2e−05

 4096 2048 1024 512 256 0

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 41: SuSE 10.0 OSS on Mspiggy Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 42: SuSE 10.0 OSS on Mspiggy Throughput

−100%

−50%

 0%

 50%

100%

150%

200%

250%

300%

350%

400%

450%

 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Streams
Linux
LiS

Figure 43: SuSE 10.0 OSS on Mspiggy Comparison

remarkably superior to that of legacy Linux pipes, regardless
of write or read sizes. In fact, STREAMS-based pipe per-
formance at smaller write/read sizes is significantly greater
(as much as 200-400%) than that of legacy pipes. The per-
formance of LiS is dismal (approx. 75% decrease) compared
to legacy Linux pipes.

Looking at only the legacy Linux and Linux Fast-
STREAMS implementations, the difference can be described
by analyzing the implementations.

Write side processing. Linux legacy pipes use a simple
method on the write side of the pipe. The pipe copies bytes
from the user into a preallocated page, by pushing a tail
pointer. If there is a sleeping reader process, the process is
awoken. If there is no more room in the buffer, the write
process sleeps or fails.

STREAMS, on the other hand, uses full flow control. On
the write side of the STREAMS-based pipe, the Stream head
allocates a message block and copies the bytes from the user
to the message block and places the message block onto the
Stream. This results in placing the message on the oppo-
site Stream head. If a reader is sleeping on the opposite
Stream head, the Stream head ’s read queue service proce-
dure is scheduled. If the Stream is flow controlled, the writ-
ing process sleeps or fails.

STREAMS has the feature that when a reader finds insuf-
ficient bytes available to satisfy the read, it issues an M READ
message downstream requesting a specific number of bytes.
When the writing Stream head receives this message, it at-
tempts to satisfy the full read request before sending data
downstream.

Linux Fast-STREAMS also has the feature that when flow
control is exerted, it saves the message buffer and a subse-
quent write of the same size is added to the same buffer.

Read side processing. On the read side of the legacy
pipe, bytes are copied from the preallocated page buffer to
the user, pulling a head pointer. If there are no bytes avail-
able to be read in the buffer, the reading process sleeps or
fails. When bytes have been read from the buffer and a
process is sleeping waiting to write, the sleeping process is
awoken.

STREAMS again uses full flow control. On the read side
of the STREAMS-based pipe, messages are removed from
the Stream head read queue, copied to the user, and then
the message is either freed (when all the bytes contained are
consumed) or placed back on the Stream head read queue. If
the read queue was previously full and falls beneath the low
water mark for the read queue, the Stream is back-enabled.
Back-enabling results in the service procedure of the write
side queue of the other Stream head to be scheduled for
service. If there are no bytes available to be read, the reading
process sleeps or fails.

STREAMS has the additional feature that if there are
no bytes to be read, it can issue an M READ message down-
stream requesting the number of bytes that were issued to
the read(2) system call.

Buffering. There are two primary differences in the
buffering approaches used by legacy and STREAMS-based
pipes:

14

1. Legacy pipes use preallocated pinned kernel pages to
store data using a simply head and tail pointer ap-
proach.

2. STREAMS-based pipes use full flow control with
STREAMS message blocks and message queues.

One would expect that the STREAMS-based approach
would present significant overheads in comparison to the
legacy approach; however, the lack of flow control in the
Linux approach is problematic.

Scheduling. Legacy pipes schedule by waking a reading
process whenever data is available in the buffer to be read,
and waking a writing process whenever there is room avail-
able in the buffer to write. While accomplishing buffering,
this does not provide flow control or scheduling. By not pro-
viding even the hysteresis afforded by Sockets, the write and
read side thrash the scheduler as bytes are written to and
removed from the pipe.

STREAMS-based pipes, on the other hand, use the
scheduling mechanisms of STREAMS. When messages are
written to the reading Stream head and a reader is sleep-
ing, the service procedure for the reading Stream head ’s read
queue is scheduled for later execution. When the STREAMS
scheduler later runs, the reading process is awoken. When
message are read from the reading Stream head read queue
and the queue was previously flow controlled, and the byte
count falls below the low water mark defined for the queue,
the writing Stream head write queue service procedure is
scheduled. Once the STREAMS scheduler later runs, the
writing process is awoken.

Linux Fast-STREAMS is designed to run tasks queued
to the STREAMS scheduler on the same processor as the
queueing process or task. This avoids unnecessary context
switches.

The STREAMS-based pipe approach results in fewer
wakeup events being generated. Because there are fewer
wakeup events, there are fewer context switches. The read-
ing process is permitted to consume more messages before
the writing process is awoken; and the writing process is per-
mitted to write more messages before the reading process is
awoken.

Result. The result of the differences between the legacy
and the STREAMS based approach is that fewer context
switches result: writing processes are allowed to write more
messages before a blocked reader is awoken and the reading
process is allowed to read more messages before a blocked
writer is awoken. This results in greater code path and data
cache efficiency and significantly less scheduler thrashing be-
tween the reading and writing process.

The increased performance of the STREAMS-based pipes
can be explained as follows:

• The STREAMS message coalescing features allows the
complexity of the write side process to approach that of
the legacy approach. This feature provides a boost to
performance at message sizes smaller than a FASTBUF.
The size of a FASTBUF on 32-bit systems is 64 bytes; on
64-bit systems, 128 bytes. (However, this STREAMS

feature is not sufficient to explain the dramatic perfor-
mance gains, as close to the same performance is exhib-
ited with the feature disabled.)

• The STREAMS read notification feature allows the
write side to exploit efficiencies from the knowledge of
the amount of data that was requested by the read side.
(However, this STREAMS feature is also not sufficient
to explain the performance gains, as close to the same
performance is exhibited with the feature disabled.)

• The STREAMS read fill mode feature permits the read
side to block until the full read request is satisfied, re-
gardless of the O NONBLOCK flags setting associated with
the read side of the pipe. (Again, this STREAMS fea-
ture is not sufficient to explain the performance gains,
as close to the same performance is exhibited with the
feature disabled.)

• The STREAMS flow control and scheduling mecha-
nisms permits the read side to read more messages be-
tween wakeup events; and also permits the write side to
write more messages between wakeup events. This re-
sults in superior code and data caching efficiencies and
a greatly reduced number of context switches. This is
the only difference that explains the full performance
increase in STREAMS-based pipes over legacy pipes.

7 Conclusions

These experiments have shown that the Linux Fast-
STREAMS implementation of STREAMS-based pipes out-
performs the legacy Linux pipe implementation by a signif-
icant amount (up to a factor of 5) and outperform the LiS
implementation by a staggering amount (up to a factor of
25).

The Linux Fast-STREAMS implementation of
STREAMS-based pipes is superior by a significant
factor across all systems and kernels tested.

While it can be said that all of the preconceptions re-
garding STREAMS and STREAMS-based pipes are appli-
cable to the under-performing LiS, and may very well be ap-
plicable to historical implementations of STREAMS, these
preconceptions with regard to STREAMS and STREAMS-
based pipes are dispelled for the high-performance Linux
Fast-STREAMS by these test results.

• STREAMS is fast.

Contrary to the preconception that STREAMS must be
slower because it is more complex, in fact the reverse
has been shown to be true for Linux Fast-STREAMS
in these experiments. The STREAMS flow control and
scheduling mechanisms serve to adapt well and increase
both code and data cache as well as scheduler efficiency.

• STREAMS is more flexible and more efficient.

Contrary to the preconception that STREAMS trades
flexibility for efficiency (that is, that STREAMS is
somehow less efficient because it is more flexible), in
fact has shown to be untrue for Linux Fast-STREAMS,

15

which is both more flexible and more efficient. Indeed,
the performance gains achieved by STREAMS appear
to derive from its more sophisticated queueing, schedul-
ing and flow control model. (Note that this is in fitting
with the statements made about 4.2BSD pipes being
implemented with UNIX domain sockets for ”perfor-
mance reasons” [MBKQ97].)

• Linux Fast-STREAMS is superior at exploiting paral-
lelisms on SMP.

Contrary to the preconception that STREAMS must
be slower due to complex locking and synchroniza-
tion mechanisms, Linux Fast-STREAMS performed as
well on SMP (hyperthreaded) machines as on UP ma-
chines and strongly outperformed legacy Linux pipes
with 100% improvements at all write sizes and a stag-
gering 500% at smaller write sizes.

• STREAMS-based pipes are fast.

Contrary to the preconception that STREAMS-based
pipes must be slower because STREAMS-based pipes
provide such a rich set of features as well as providing
full duplex operation where legacy pipes only unidirec-
tional operation, the reverse has been shown in these
experiments for Linux Fast-STREAMS. By utilizing
STREAMS flow control and scheduling, STREAMS-
based pipes indeed perform better than legacy pipes.

• STREAMS-based pipes are neither unnecessarily com-
plex nor cumbersome.

Contrary to the preconception that STREAMS-based
pipes must be poorer due to their increased implemen-
tation complexity, the reverse has shown to be true in
these experiments for Linux Fast-STREAMS. Also, the
fact that legacy, STREAMS and 4.2BSD pipes conform
to the same standard (POSIX), means that they are
no more cumbersome from a programming perspective.
Indeed a POSIX conforming application will not know
the difference between the implementation (with the ex-
ception that superior performance will be experienced
on STREAMS-based pipes).

• LiS performs poorly.

Despite claiming to be an adequate implementation of
SVR4 STREAMS, LiS performance is dismal enough
to make it unusable. Due to conformance and imple-
mentation errors, LiS was already deprecated by Linux
Fast-STREAMS, and these tests exemplify why a re-
placement for LiS was necessary and why support for
LiS was abandoned by the OpenSS7 Project [SS7]. LiS
pipe performance tested about half that of legacy Linux
pipes and a full order of magnitude slower than Linux
Fast-STREAMS.

8 Future Work

There are two future work items that immediately come to
mind:

1. It is fairly straightforward to replace the pipe imple-
mentation of an application that uses shared libraries

from underneath it using preloaded libraries. The
Linux Fast-STREAMS libstreams.so library can be
preloaded, replacing the pipe(2) library call with the
STREAMS-based pipe equivalent. A suitable applica-
tion that uses pipes extensively could be benchmarked
both on legacy Linux pipes and STREAMS-based pipes
to determine the efficiencies achieved over a less nar-
rowly defined workload.

2. Because STREAMS-based pipes exhibit superior per-
formance in these respects, it can be expected that
STREAMS pseudo-terminals will also exhibit superior
performance over the legacy Linux pseudo-terminal im-
plementation. STREAMS pseudo-terminals utilize the
STREAMS mechanisms for flow control and schedul-
ing, whereas the Linux pseudo-terminal implementation
uses the over-simplified approach taken by legacy pipes.

9 Related Work

A separate paper comparing a TPI STREAMS implemen-
tation of UDP with the Linux BSD Sockets implementation
has also been prepared. That paper also shows significant
performance improvements for STREAMS attributable to
the similar causes.

References

[GC94] Berny Goodheart and James Cox. The magic
garden explained: the internals of UNIX System
V Release 4, an open systems design / Berny
Goodheart & James Cox. Prentice Hall, Aus-
tralia, 1994. ISBN 0-13-098138-9.

[LfS] Linux Fast-STREAMS – A
High-Performance SVR 4.2 MP
STREAMS Implementation for Linux.
http://www.openss7.org/download.html.

[LiS] Linux STREAMS (LiS). http://www.openss7.-
org/download.html.

[LML] Linux Kernel Mailing List – Frequently Asked
Questions. http://www.kernel.org/pub/linux/-
docs/lkml/#s9-9.

[MBKQ97] Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quaterman. The
design and implementation of the 4.4BSD op-
erating system. Addison-Wesley, third edition,
November 1997. ISBN 0-201-54979-4.

[Rit84] Dennis M. Ritchie. A Stream Input-output Sys-
tem. AT&T Bell Laboratories Technical Jour-
nal, 63(8):1897–1910, October 1984. Part 2.

[SS7] The OpenSS7 Project. http://www.openss7.-
org/.

[Ste97] W. Richard Stevens. Advanced Programming in
the UNIX Environment. Addison–Wesley, Read-
ing, Massachusetts, fifteenth edition, December
1997. ISBN 0-201-56317-7.

16

A Performance Testing Script

A performance testing script (perftest sctipt) was used
to obtain repeatable results. The script was executed as:

$#> ./perftest_script -a -S10 --hiwat=$((1<<16)) --lowat=$((1<<13))

The script is as follows:
#!/bin/bash
set -x
interval=5
testtime=2
command=‘echo $0 | sed -e ’s,.*/,,’‘
perftestn=
perftest=
if [-x ‘pwd‘/perftest] ; then

perftest=‘pwd‘/perftest
elif [-x /usr/lib/streams/perftest] ; then

perftest=/usr/lib/streams/perftest
elif [-x /usr/libexec/streams/perftest] ; then

perftest=/usr/libexec/streams/perftest
elif [-x /usr/lib/LiS/perftest] ; then

perftest=/usr/lib/LiS/perftest
elif [-x /usr/libexec/LiS/perftest] ; then

perftest=/usr/libexec/LiS/perftest
fi
if [-x ‘pwd‘/perftestn] ; then

perftestn=‘pwd‘/perftestn
elif [-x /usr/lib/streams/perftestn] ; then

perftestn=/usr/lib/streams/perftestn
elif [-x /usr/libexec/streams/perftestn] ; then

perftestn=/usr/libexec/streams/perftestn
elif [-x /usr/lib/LiS/perftestn] ; then

perftestn=/usr/lib/LiS/perftestn
elif [-x /usr/libexec/LiS/perftestn] ; then

perftestn=/usr/libexec/LiS/perftestn
fi
[-n "$perftestn"] || [-n "$perftest"] || exit 1
scls=
if [-x ‘pwd‘/scls] ; then

scls=‘pwd‘/scls
elif [-x /usr/sbin/scls] ; then

scls=/usr/sbin/scls
fi
(

set -x
[-n "$scls"] && $scls -a -c -r pipe pipemod
for size in 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
do

[-n "$perftest"] && $perftest -q \
-r -t $testtime -i $interval -m nullmod -p 0 -s $size ${1+$@}

[-n "$perftestn"] && $perftestn -q \
-r -t $testtime -i $interval -m nullmod -p 0 -s $size ${1+$@}

[-n "$scls"] && $scls -a -c -r pipe pipemod bufmod nullmod
done

) 2>&1 | tee ‘hostname‘.$command.‘date -uIseconds‘.log

B Raw Data

Following are the raw data points captured using the
perftest script benchmarking script:

Table 1 lists the raw data from the perftest program
that was used in preparing graphs for FC6 (i386) on Porky.

Table 2 lists the raw data from the perftest program
that was used in preparing graphs for CentOS 4 on Porky.

Table 3 lists the raw data from the perftest program that
was used in preparing graphs for SuSE OSS 10 on Porky.

Table 4 lists the raw data from the perftest program that
was used in preparing graphs for Ubuntu 6.10 on Porky.

Table 5 lists the raw data from the perftest program that
was used in preparing graphs for RedHat 7.2 on Pumbah.

Table 6 lists the raw data from perftest, used in prepar-
ing graphs for Fedora Core 6 (x86 64) HT on Daisy.

Table 7 lists the raw data from perftest, used in prepar-
ing graphs for CentOS 5 (x86 64) HT on Daisy.

Table 8 lists the raw data from perftest, used in prepar-
ing graphs for CentOS 5.2 (x86 64) HT on Daisy.

Table 9 lists the raw data from perftest, used in prepar-
ing graphs for SuSE 10.0 OSS on Mspiggy.

Size LiS STREAMS Linux

1 37188 344307 116966
2 37284 351804 117820
4 37179 347164 116381
8 37030 338055 117887

16 37225 329919 117822
32 36999 317133 116595
64 36809 302554 116686

128 35127 283041 117284
256 34828 271630 114657
512 34807 263021 114821

1024 34607 247080 111825
2048 34204 214279 106369
4096 33139 176842 100510

Table 1: Raw data for Fedora Core 6 on Porky

Size LiS STREAMS Linux

1 53119 479434 132195
2 53066 505597 132293
4 53289 501230 131201
8 53216 475951 132182

16 53254 464013 131688
32 52952 438519 131697
64 52499 407751 129409

128 50065 379356 130188
256 49348 372393 126861
512 49297 360773 125318

1024 48598 336727 123318
2048 48274 290614 117809
4096 47004 227778 110875

Table 2: Raw data for CentOS 4.0 on Porky

Size LiS STREAMS Linux

1 53119 961820 168049
2 53066 933673 176267
4 53289 942865 172912
8 53216 837034 168898

16 53254 827399 166427
32 52952 740263 172185
64 52499 659878 169231

128 50065 582512 174005
256 49348 580011 166646
512 49297 547149 167829

1024 48598 512452 152447
2048 48274 413858 154813
4096 47004 307174 138756

Table 3: Raw data for SuSE 10.0 OSS on Porky

17

Size LiS STREAMS Linux

1 53119 430184 144855
2 53066 433274 143835
4 53289 425094 145879
8 53216 407647 143399

16 53254 394244 141268
32 52952 372063 144056
64 52499 354598 139854

128 50065 339602 141793
256 49348 324405 140269
512 49297 311610 134445

1024 48598 292892 136385
2048 48274 255374 127651
4096 47004 202755 116218

Table 4: Raw data for Ubuntu 6.10 on Porky

Size LiS STREAMS Linux

1 53160 497439 209223
2 53440 499519 199566
4 53252 496272 187440
8 53097 489615 188829

16 53179 485036 182148
32 52926 469102 185174
64 53535 457550 182383

128 49452 416632 178087
256 49584 396356 177204
512 49169 381209 165517

1024 48992 355111 173222
2048 47970 303334 163572
4096 46598 240386 136522

Table 5: Raw data for RedHat 7.2 on Pumbah

Size LiS STREAMS Linux

1 37188 334896 146553
2 37284 334796 122048
4 37179 329476 140025
8 37030 341612 160396

16 37225 333520 125678
32 36999 325169 125124
64 36809 302603 109340

128 35127 278490 128133
256 34828 247379 122689
512 34807 235190 104739

1024 34607 215718 83447
2048 34204 187982 81301
4096 33139 150392 77118

Table 6: Raw data for Fedora Core 6 on Daisy

Size STREAMS Linux

1 232029 262762
2 221413 224493
4 217800 294765
8 206325 284109

16 194132 252365
32 200675 347247
64 198463 290958

128 210551 280954
256 168482 270703
512 164051 198930

1024 154924 197374
2048 138744 101038
4096 116291 70827

Table 7: Raw data for CentOS 5 on Daisy

Size STREAMS Linux

1 693675 133714
2 677583 192987
4 652141 137415
8 617148 153168

16 544888 127430
32 430115 193361
64 322424 118036

128 221081 143728
256 187469 110754
512 185642 102351

1024 174350 103238
2048 155567 106183
4096 130076 77321
8192 68071 62987

Table 8: Raw data for CentOS 5.2 on Daisy

Size LiS STREAMS Linux

1 690896 114253
2 662870 107000
4 639931 128916
8 596668 114321

16 520846 124913
32 427005 132284
64 321028 105085

128 212760 103989
256 177236 71573
512 173048 58217

1024 163703 66249
2048 154194 64369
4096 134026 63115
8192 66860 55217

Table 9: Raw data for SuSE 10.0 OSS on Mspiggy

18

